Альтернативные источники энергии презентация к уроку по окружающему миру (4 класс) на тему
Слайд 1
Альтернативные источники энергии
Слайд 2
Альтернативная энергетика – совокупность перспективных способов получения энергии, которые распространены не так широко, как традиционные, однако представляют интерес из-за выгодности и экологичности .
Слайд 3
Энергию солнца; Энергию ветра; Гидроэнергию; Энергию водорода; Геотермальную энергию; Гидротермальная энергию; Биотопливо . К альтернативным источникам относят:
Слайд 4
Статистика потребления мировой энергии 2009 г. Мир, млн. т. США % ЕС, % Япония, % Россия, % Китай, % Индия, % Гидро 227,4 9,6 12,8 3,3 6,2 8,4 2,8 Геотермальная 43,5 30,1 7,9 6,6 0,1 0,0 0,0 Ветер/ солнце 7,2 27,4 37,8 12,6 0,0 0,0 1,9 Биомасса 1089,0 6,7 5,2 0,5 0,6 19,7 18,5
Слайд 5
Энергия солнечной радиации может быть преобразована в постоянный электрический ток посредством солнечных батарей — устройств, состоящих из тонких пленок кремния или других полупроводниковых материалов. Преимущество фотоэлектрических преобразователей обусловлено отсутствием подвижных частей, их высокой надежностью и стабильностью. Энергия солнца
Слайд 6
При этом срок их службы практически не ограничен. Они имеют малую массу, отличаются простотой обслуживания, эффективным использованием как прямой, так и рассеянной солнечной радиации. Модульный тип конструкций позволяет создавать установки практически любой мощности и делает их весьма перспективными. Энергия солнца
Слайд 7
Применение солнечных батарей
Слайд 8
преимущества Отсутствие подвижных частей Неограниченный срок службы Высокая надёжность и стабильность Малая масса Простота обслуживания Модульный тип недостатки Малый КПД (10-12% в настоящее время) Преимущества и недостатки солнечных батарей.
Слайд 9
Потенциал энергии ветра подсчитан: примерно 170 трлн. кВт ч в год. Энергия ветра
Слайд 10
Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты. Принцип действия ветряных электростанций прост: ветер крутит лопасти ветряка, приводя в движение вал электрогенератора. Тот в свою очередь вырабатывает электрическую энергию . Мощность ветряных электростанций различна может достигать 800 МВт. Энергия ветра
Слайд 11
Преимущества и недостатки ветряных электростанций преимущества Дешевое производство недостатки Большая шумность Занимают большую площадь Создают помехи радиоволнам Мешают проветриванию районов Влияют на климат
Слайд 12
Гидроэлектростанции преобразуют энергию потока воды в электроэнергию посредством гидравлических турбин, приводящих во вращение электрические генераторы. Наибольший КПД гидроэлектростанция имеет тогда, когда поток воды падает на турбину сверху. Для этих целей строится плотина, поднимающая уровень воды в реке и сосредотачивающая напор воды в месте расположения турбин. Мощность гидроэлектростанций может достигать 25-30 МВт Гидроэлектростанции
Слайд 13
Для выработки электроэнергии электростанции такого типа используют энергию прилива. Первая такая электростанция ( Паужетская ) мощностью 5 МВт была построена на Камчатке. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн — перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины, которые вращают генератор. Во время прилива вода поступает в бассейн. Когда уровни воды в бассейне и море сравняются, затворы водопропускных отверстий закрываются Приливные электростанции
Слайд 14
С наступлением отлива уровень воды в море понижается, и, когда напор становится достаточным, турбины и соединенные с ним электрогенераторы начинают работать, а вода из бассейна постепенно уходит. Приливные электростанции
Слайд 15
Преимущества и недостатки приливных электростанций преимущества Получение энергии около моря. недостатки Нарушают обмен воды Влияют на климат Меняют направление и скорость воды
Слайд 16
Электростанции такого типа преобразуют внутреннее тепло Земли (энергию горячих пароводяных источников) в электричество. Первая геотермальная электростанция была построена на Камчатке. Существует несколько схем получения электроэнергии на геотермальной электростанции. Прямая схема: природный пар направляется по трубам в турбины, соединенные с электрогенераторами. Непрямая схема: пар предварительно (до того как попадает в турбины) очищают от газов, вызывающих разрушение труб. Геотермальные электростанции
Слайд 17
Смешанная схема: неочищенный пар поступает в турбины, а затем из воды, образовавшийся в результате конденсации, удаляют не растворившиеся в ней газы . Геотермальные электростанции
Слайд 18
Преимущества и недостатки геотермальных электростанций преимущества Снабжение энергией труднодоступных районов недостатки Локальное оседание грунта Большая шумность Выброс газов, иногда отравляющих Не везде возможно построить
Слайд 19
Водород, самый простой и легкий из всех химических элементов, можно считать отличным топливом. Он имеется всюду, где есть вода. При сжигании водорода образуется вода, которую можно снова разложить на водород и кислород, причем этот процесс не вызывает никакого загрязнения окружающей среды. Водородное пламя не выделяет в атмосферу продуктов, которыми неизбежно сопровождается горение любых других видов топлива: углекислого газа, окиси углерода, углеводородов, золы. Водород обладает очень высокой теплотворной способностью. Водород
Слайд 20
Водород можно транспортировать и распределять по трубопроводам, как природный газ. В 1969 г. в итальянском отделении «Евратома» была пущена в эксплуатацию установка для термолитического получения водорода, работающая с КПД 55% при температуре 730°С. Как полагают, высокотемпературные реакторы позволят поднять КПД таких процессов до 85%. Водород
Слайд 21
Биотопливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель ), твёрдое биотопливо (дрова, брикеты,топливные гранулы, щепа, солома, лузга) и газообразное ( биогаз , водород ). Биотопливо
Слайд 22
По оценкам специалистов в 2007 году во всём мире было произведено 54 миллиарда литров биотоплив , что составляет 1,5 % от мирового потребления жидких топлив. Производство этанола составило 46 миллиардов литров. США и Бразилия производят 95 % мирового объёма этанола. В Мексике прошли испытания биотоплива для самолетов, полученного из растений. Полет был успешен. Сообщается, что к 2020 году промышленность мира сможет производить до 40 миллионов литров биотоплива в год. К 2020 году производство возрастет до 700 миллионов литров. Биотопливо
I. Введение
Моя работа посвящена необычным источникам энергии. В окружающем нас мире очень важную роль играют химические источники тока. Они используются в мобильных телефонах и космических кораблях, в крылатых ракетах и ноутбуках, в автомобилях, фонариках и обыкновенных игрушках. Мы каждый день сталкиваемся с батарейками, аккумуляторами, топливными элементами.
Слово «энергия» прочно вошло в обиходный словарь начала XXI в. человечество в последнее время сталкивается с дефицитом энергоресурсов. Грядущее истощение запасов нефти и газа побуждает ученых искать новые возобновляемые источники энергии
Возобновляемые источники сырья и способы получения из них энергии – магистральная тема многих университетских исследований. Лаборатория в Нидерландах изучает возможность получения электричества из растений, точнее, из корневой системы растений и из бактерий, находящихся в почве.1
Энергия солнца, энергия ветра, энергия приливов и отливов возобновляемым источникам энергии в последнее время всё чаще причисляют и растения. Ведь только зеленое растение является той единственной в мире лабораторией, которая усваивает солнечную энергию и сохраняет ее в виде потенциальной химической энергии органических соединений, образующихся в процессе фотосинтеза.
Один из альтернативных источников энергии – процесс фотосинтеза. Процесс фотосинтеза, протекающий в клетке растения, является одним из главных процессов. В ходе него происходит не только разделение молекул воды на кислород и водород, но и сам водород в какой-то момент оказывается разделенным на составные части — отрицательно заряженные электроны и положительно заряженные ядра. Так что, если в этот момент ученым удастся «растащить» положительно и отрицательно заряженные частицы в разные стороны, то, по идее, можно получить замечательный живой генератор, топливом для которого служили бы вода и солнечный свет, а кроме энергии, он бы еще производил и чистый кислород. Возможно, в будущем такой генератор и будет создан. Но для осуществления этой мечты нужно отобрать наиболее подходящие растения, а может быть, даже научиться изготавливать хлорофилловые зерна искусственно, создать какие-то мембраны, которые бы позволили разделять заряды.
Данные исследований лаборатории молекулярной биологии и биофизической химии МФТУ по созданию таких мембран показали, что живая клетка, запасая электрическую энергию в митохондриях, использует ее для произведения очень многих работ: строительства новых молекул, затягивания внутрь клетки питательных веществ, регулирования собственной температуры.. С помощью электричества производит многие операции и само растение: дышит, движется (как это делают листочки всем известной мимозы-недотроги), растет.
Цель моей работы – исследование электрических свойств овощей и фруктов.
Задачи:
- Экспериментально измерить и проанализировать силу тока и напряжение таких батарей.
- Провести исследования с гальванических элементов, изменяя ширину пластин, глубину их погружений, и расстояний между электродами.
- Испытайте разные комбинации последовательно соединённых продуктов и проанализируйте полученные результаты.
- Собрать цепь, состоящую из нескольких таких батареек и постараться зажечь лампочку, запустить часы.
- Изготовить прибор гальванометр для определения напряжения.
- Исследовать электропроводность овощей и фруктов, разных сроков хранения, используя свой прибор.
Объект исследования: фрукты и овощи.
Предмет исследования: свойства овощных и фруктовых источников тока.
Гипотеза: Так как фрукты и овощи состоят из различных минеральных веществ (электролитов), то они могут стать природными источниками тока.
Методы исследования: изучение и анализ литературы, проведение эксперимента, анализ полученных данных.