Итак, тема сложения и вычитания усвоена, есть четкое представление о математических операциях умножения и деления, можно приступать к делению чисел столбиком. Не каждый школьник с первого урока поймет смысл данной темы, особенно в случаях деления многозначных чисел и чисел с остатком. И здесь ему потребуется всяческая поддержка родителей. Чтобы помочь ребен ;:ку справиться с делением уголком, воспользуйтесь нашими теоретическими подсказками. Статья имеет подробное пояснение хода решения примеров, а также доступные наглядные иллюстрации.
Как научиться делить столбиком 3 класс
Арифметические расчеты в 3 классе базируются на таблице умножения от 1 до 10 в пределах чисел до 100. На этом этапе ребенок должен понимать сам процесс деления и безошибочно определять категории «делителя», «делимого» и «частного». Конечно, деление многозначных чисел проще всего проводить столбиком. Школьник меньше путается и не теряет цифры. Таким образом, вырабатывается мысленная логическая схема. Суть метода нельзя уловить без знания таблицы умножения и способа «обратного» деления.
Алгоритм деления в столбик:
Например, 98 необходимо разделить в столбик на 7.
В нашем примере 98 – делимое, 7 – делитель, результат деления, который получится в итоге – частное. Его и необходимо найти.
Делимое и делитель запишем рядом, разделив их вертикальной линией с уголком. Теперь необходимо определить, сколько семерок поместится в девятке – одна. Цифру «1» запишем под линией в правом нижнем углу.
Под девяткой запишем семерку, подчеркнем линией, отнимем и запишем разницу — 2. Если в двойке не помещается ни одной семерки, значит решение верно. Снесем к двойке верхнюю восьмерку. Получим — 28. Проанализируем, сколько семерок может поместиться в цифре «28» – 4. Полученный ответ запишем рядом с «1».
От 28 отнимем цифру «28» и получим «0» — значит, деление произвели правильно. Если в итоге деления не получается ноль, возможна в подсчетах арифметическая ошибка или деление без остатка невозможно. В итоге частное получилось «14».
Правильность деление можно проверить, если при умножении 14 на 7 получается 98 — подсчеты верны.
Главная проблема, с которой сталкиваются третьеклассники на уроках математики – это отсутствие умения производить быстрые арифметические действия. А ведь вся школьная программа начальной школы базируется на этой основе, особенно действия на деление.
Общие сведения
Любую математическую операцию можно осуществить в столбик. Деление не является исключением. Следует отметить, что оно бывает без остатка и с ним. Если выполняется операция первого типа, то необходимо знать признаки деления. Последними называются правила, по которым можно определить — делится ли число на другое без остатка. Однако во втором случае в конце вычислений получается определенное значение. Его математики называют остатком.
Деление такого типа широко применяет в языках программирования для создания различных условий. Если необходимо произвести деление в столбик на однозначное число без остатка, то нужно знать признаки делимости. Последние не нужны в том случае, когда следует осуществить деление с остатком трехзначного числа на однозначное. Следует отметить, что нужно различать терминологию. Не все люди знают основное различие между цифрами и числами. Первые применяются для образования вторых, то есть первые — набор знаков.
Основным требованием, необходимым для осуществления этой операции, является доскональное знание таблицы умножения. Без последней не обходится ни один урок, письменное отчетное задание или сдача экзамена. Операция деления применяется реже сложения, вычитания или умножения. Однако ее следует знать досконально и уметь производить вычисления не только при помощи калькулятора или компьютера, но и в ручном режиме.
Иногда ученики сталкиваются с непониманием материала, который не может объяснить доходчиво учитель для каждого индивидуально. Если у ребенка проблемы в какой-либо учебной четверти, то не стоит затягивать с решением проблемы. Родителям нужно разработать собственную систему обучения или воспользоваться уже готовой. Однако некоторые из них начинают кричать на ребенка, травмируя психику. Следует помнить, что он часто копирует поведение родителей. Когда они его приучают к эмоциональному решению проблем, тогда и вырастают неуверенные в себе молодые люди.
Следует помнить, что для изучения любой точной науки необходимо терпение. Сразу ничего не получалось даже у знаменитых математиков. Необходимо дома создать уютный уголок с тренажерами для тренировок по решению математических задач. Пусть это будет своеобразный офис для малыша. Ему необходимо помочь его оборудовать: распечатать необходимый математический материал и сделать хорошее освещение.
Как научиться делить столбиком 4 класс
Программа 4 класса, по сравнению с прошлым учебным годом, усложняется в сторону увеличения расчетных чисел. Четвероклассники проводят деление многозначных чисел больше 100. Они учатся делить уголком числа с двух и трехзначным делителем, а также решать примеры с остатком. Алгоритм решения деления уголком аналогичен алгоритму, изучаемому в третьем классе.
Давайте, в качестве примера 1072 разделим на 8. Сразу необходимо определиться с категориями деления, 1072 — делимое, 8 – делитель. Результат, полученный в качестве действия, — частное. Числа запишем с двух сторон уголка. Сразу определимся с числом, которое больше самого делителя. 1<8, поэтому начинают действие с 10. В данном числе может содержаться лишь одна 8. Запишем результат в правой колонке.
Делитель 8 умножим на 1 и получим — 8. Результат подпишем под делимым 1072 и вычтем. Полученное число 2<8, поэтому его увеличим за счет следующего неиспользованного числа делимого — 7. В итоге получится цифра «27». Затем действуют по алгоритму. Проанализируем, сколько восьмерок содержит число «27». В нем заключено 3 х 8=24. Цифру «3» допишем в правой колонке рядом с частным 1. На данный момент частное – 13. Слева от 27 – 24 = 3.
Последним числом частного будет цифра «32», за счет неиспользованного делителя. Проанализировав число, запишем результат: 32 : 8 = 4. Полученную 4 присоединим к частному — 134. Осталось лишь проверить результат: 134 х 8 =1072.
Как научиться делить столбиком на двузначное
В 4 классе ученик должен уметь делить уголком многозначные значения на двух- и трехзначное число. Полученный навык необходим для дальнейшего курса математики вплоть до 11 класса. Конечно, такое деление сложнее однозначного, но при правильном подходе и понимании оно не составит труда. Здесь важен правильный подбор чисел и постепенное освоение темы, от простого к сложному.
Для примера выполним действие: 144 : 24
Как и в случае однозначного деления, определим число большее самого делителя: 14<24, т.е. будем делить сразу все число — 144. Прикинем 144 : 20, получим примерно 7. Пробную цифру пока не пишут в колонке. Проверим, 7 х 24 = 168, что значительно больше нашего делимого. Возьмем по 6 х 24 = 144 – это наше число. Подпишем его под делимым и получим ответ – 6.
После постепенного освоения простых примеров, можно перейти к более сложным.
Разделим 1035 на 23.
Определив первую цифру, 103 >23, делим ее на 23. 20 х 5 = 100, но у нас в примере 23 х 5 = 115, что больше 103. Возьмем по 4: 23 х 4 = 92. Запишем ответ в правой колонке под чертой. От 103 – 92 = 11. Данные запишем под делимым. 11<23, т.е. расчеты сделаны верно. К 11 снесем 5 и получим цифру «115». Методом подбора определим результат: 23 х 5 = 115. Цифру «5» запишем рядом с 4 в ответ – 45. Проверим: 45 х 23 = 1035, результат верен.
Аналогично выполняют деление на любые многозначные числа (трехзначные, четырехзначные и т.п.).
Как научиться делить в столбик с остатком
Деление с остатком – следующий этап обучения. Во время таких действий делимое невозможно ровно разделить на части. Ответ примера будет иметь неделимый кусок, меньший делителя. Чтобы школьник быстрее понял смысл математических действий, тему объясняют на доступных примерах. На подносе находится 34 конфеты, которые нужно разделить на 8 детей. Когда каждый ребенок получит по 4 конфеты, на столе останется еще 2 штуки. Это и будет остаток. Вычисления выглядят следующим образом: 34 : 8= 4 ост (2). Откуда взялась цифра «2»? 8 х 4= 32, 34 — 32= 2. Принцип деления уголком с остатком аналогичен классическому, с одной разницей – наличием остатка.
Для примера разделим 235 на 14.
235 — делимое, расположим слева, делитель (14) напишем правее. Оба значения между собой разделим уголком. Приступим к поиску целого. 23>14, в данном числе помещается 1 делитель. Единицу запишем внизу под уголком. 23 — 14 = 9.
К 9 снесем 5 — цифру единиц делимого и в итоге получим второе неполное делимое – 95. Методом подбора разделим 90 : 10 = 9, но в нашем случае 14 х 9= 126, что больше 95. Попробуем 14 х 8= 112. 112>95, поэтому возьмем на единицу меньше: 7 х 14= 98, что также больше 96 на две единицы. Теперь уже точно известно, что нужная цифра 6: 6 х 14= 84 95 — 84= 11, т.е. 11 — это остаток.
Во время решения примеров с остатком, ответ может быть записан двумя способами:
- в виде дроби, когда в числителе размещают остаток, а в знаменатель записывают делитель:11/16,
- но чаще всего ответ записывают словами: 6 целых и 11 в остатке.
Как научиться делить столбиком трехзначные числа
Когда в делителе стоит трехзначное число, действие лучше всего выполнять в столбик. Алгоритм математического решения аналогичен делению на двузначное число.
Для примера рассмотрим следующие действия: 146676 : 719
146<719, поэтому сразу возьмем четырехзначное число «1466». В данном значении помещается 2 делителя: 719 х 2= 1438. Цифра «2» будет первым значением частного. Ее запишем справа под уголком.
1466 — 1438 = 28. Полученную разность запишем под чертой слева. Снесем к 28 цифру «7». 287<719, поэтому рядом с двойкой запишем «0».
Снесем последнюю цифру делимого «6», в итоге получится число «2876», которое разделим на 719. Возьмем по 3: 719 х 3 = 2157 — мало, можно взять по 4: 719 х 4 = 2876. Цифру «4» запишем рядом с «20», получим в ответе 204. От 2876 отнимем 2876 , получим разность 0.
Желательно в конце проверить правильность выполнения действий: 204 х 719 = 146676. Ответ верен.
Простые и составные числа
Числовые значения в математике делятся на простые и составные. Ошибка многих новичков при решении задач состоит в том, что многие из них не знают о наличии специальных таблиц. Для «распознания» простого числа существуют два способа:
- Ручной.
- Табличный.
Первым методом рекомендуется пользоваться, когда нет возможности определить простое число при помощи таблицы или вычислительной машины (компьютера). Для этих целей существует специальный алгоритм, который состоит из набора шагов на нахождение делителя. Он имеет следующий вид:
- Произвести перебор всех множителей.
- Записать результат или убедиться, что число является простым.
Он является простым, но для понимания его математического смысла следует разобрать определенный пример для числа 5678913. Решение задания нужно осуществлять по следующей схеме:
- 1: делится, то есть 5678913 / 1 = 5678913.
- 2: не является четным. Следовательно, этого делителя не существует.
- 3: 5 + 6 + 7 + 8 + 9 + 1 + 3 = 39 = 3 + 9 = 12 (делится).
- 4: множитель отсутствует, поскольку 13 не делится на 4.
- 5: число не заканчивается на 0 или 5 (не делится).
- 6: сумма цифр равная 12, и делится на 2 и 3 (делится).
- 7: 5|678|913 = 6 + 7 + 8 + 9 + 1 + 3 = 34 (нет делителя).
- 8: 913 не делится на 8, 4 и 2.
- 9: не делится, поскольку сумма цифр эквивалентна 12.
Когда нужно доказать, что число является простым, тогда можно завершить упражнение на третьем шаге. Для этого необходимо минимальное количество операций, поскольку дальше их выполнять не имеет смысла. Если суть решения заключается в нахождении делителей, то его можно продолжать до 9 пункта включительно.
Можно сделать вывод, что исходное число является составным. Однако существует целый алгоритм деления на однозначное число столбиком или разложение на множители. Для трехзначного числа довольно все просто.
Как научиться делить в столбик многозначные числа
Этапы деления в столбик многозначного числа аналогичны классическому делению многозначного числа на однозначное. В первом случае учитываем только первую цифру делителя, а при делении на многозначное берем во внимание количество всех цифр делителя. Рабочее число обязательно должно быть больше делителя. В других случаях – добавляем цифру следующего разряда и производим деление по алгори class=»aligncenter» width=»800″ height=»600″[/img]
Математические действия на деление в столбик будут под силу школьнику, если он поймет основной алгоритм вычисления. Правильность решения всегда можно проверить умножением.
Методика деления в столбик
Существует определенный алгоритм для деления в столбик. Изучается он в начальных классах средних образовательных школ. Методику можно применять не только для положительных, но и отрицательных значений. При этом нужно учитывать знак:
- Деление отрицательной величины на отрицательную — положительное значение.
- При делении положительного на отрицательное или наоборот — отрицательная величина.
Существует 2 разновидности операции: с остатком и без него. В первом случае результат записывается в виде целого значения и остатка, а во втором — является только целой величиной.
Алгоритм без остатка
Методика применяется в том случае, когда делимое является не простым числом, а содержит множители. Кроме того, при его делении на делитель, не соответствующий одному из признаков деления. Например, 33 делится на 2 с остатком. Однако, когда делитель равен 3, то последнего нет.
Для применения алгоритма нужно наглядно разобрать следующий пример: требуется разделить 78 на 2. Методика выполнения этой операции имеет следующий вид:
- Записать делимое с левой стороны, а делитель — справа.
- По карточке простых чисел или при помощи ручного метода необходимо определить принадлежность делимого к простым значениям (78 делится на 2, поскольку заканчивается на четную цифру 8).
- Разделить две значения вертикальной чертой.
- Выделить I неполное делимое: 7.
- По таблице умножения подобрать ближайшее целое (3). При произведении его на делитель должно получиться значение, которое меньше первого неполного делимого (3 * 2 = 6 < 7). Если записать 4, то 4 * 2 = 8 > 7 (вариант не подходит).
- Записать число, полученное при умножении делителя на подобранное значение, под I неполным делимым. Произвести операцию вычитания (7 — 6 = 1).
- Результат вычитания (1), который называется остатком, не делится на 2. Следовательно, нужно дописать II неполное делимое (18). Если по какой-то причине, результат делится на делитель, то подобранное значение является неверным.
- Значение 18 делится на 2, т. е. 18/2 = 9.
- Результат деления 78 на 2 равен 39.
Правильность выполнения операции можно проверить посредством умножения результата на множитель, т. е. 39 * 2 = 78.
Операция с остатком
Не во всех случаях результат деления двух чисел является целой величиной. В школьной программе встречается группа примеров, в которых требуется найти остаток, полученный при выполнении операции деления 2 значений (77/3). Алгоритм похож на предыдущий, но имеются некоторые особенности:
- Два числа записываются, как и в предыдущем случае.
- Принадлежность к множеству простых чисел не проверяется.
- Выделить I неполное делимое: 7.
- Подобрать ближайшее целое число, записав его в результат: 2.
- Выполнить проверку: 3 * 2 = 6 < 7 (значение подходит).
- Записать 6 под 7, а затем выполнить операцию вычитания: 7 — 6 = 1. Остаток меньше 3, следовательно, число подобрано правильно.
- Выполнить подбор множителя для 17: целочисленного значения нет. Следовательно, нужно подобрать ближайшее целое: 5.
- Произвести проверку: 3 * 5 = 15 < 17.
- Записать 5 в результат и определить остаток: 17 — 15 = 2.
- Результат деления 77 на 3 эквивалентен: 25 с остатком 2.
Таким образом, для выполнения операции деления двузначного числа на однозначное нужно знать признаки делимости величин, а также основные алгоритмы деления с остатком и без него.